
12. Comparing several means (one-way ANOVA)

This chapter introduces one of the most widely used tools in psychological statistics, known as “the
analysis of variance”, but usually referred to as ANOVA. The basic technique was developed by Sir
Ronald Fisher in the early 20th century and it is to him that we owe the rather unfortunate terminology.
The term ANOVA is a little misleading, in two respects. Firstly, although the name of the technique
refers to variances, ANOVA is concerned with investigating differences in means. Secondly, there are
several different things out there that are all referred to as ANOVAs, some of which have only a very
tenuous connection to one another. Later on in the book we’ll encounter a range of different ANOVA
methods that apply in quite different situations, but for the purposes of this chapter we’ll only consider
the simplest form of ANOVA, in which we have several different groups of observations, and we’re
interested in finding out whether those groups differ in terms of some outcome variable of interest.
This is the question that is addressed by a one-way ANOVA.

The structure of this chapter is as follows: in Section 12.1 I’ll introduce a fictitious data set that
we’ll use as a running example throughout the chapter. After introducing the data, I’ll describe the
mechanics of how a one-way ANOVA actually works (Section 12.2) and then focus on how you can run
one in JASP (Section 12.3). These two sections are the core of the chapter. The remainder of the
chapter discusses a range of important topics that inevitably arise when running an ANOVA, namely
how to calculate effect sizes (Section 12.4), post hoc tests and corrections for multiple comparisons
(Section 12.5) and the assumptions that ANOVA relies upon (Section 12.6). We’ll also talk about
how to check those assumptions and some of the things you can do if the assumptions are violated
(Sections 12.6.1 to 12.7). Then we’ll cover repeated measures ANOVA in Sections 12.8 and 12.9. At
the end of the chapter we’ll talk a little about the relationship between ANOVA and other statistical
tools (Section 12.10).

12.1

An illustrative data set

Suppose you’ve become involved in a clinical trial in which you are testing a new antidepressant drug
called Joyzepam. In order to construct a fair test of the drug’s effectiveness, the study involves three
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separate drugs to be administered. One is a placebo, and the other is an existing antidepressant /
anti-anxiety drug called Anxifree. A collection of 18 participants with moderate to severe depression
are recruited for your initial testing. Because the drugs are sometimes administered in conjunction with
psychological therapy, your study includes 9 people undergoing cognitive behavioural therapy (CBT)
and 9 who are not. Participants are randomly assigned (doubly blinded, of course) a treatment, such
that there are 3 CBT people and 3 no-therapy people assigned to each of the 3 drugs. A psychologist
assesses the mood of each person after a 3 month run with each drug, and the overall improvement
in each person’s mood is assessed on a scale ranging from ´5 to `5. With that as the study design,
let’s now load up the data file in clinicaltrial.csv. We can see that this data set contains the
three variables drug, therapy and mood.gain.

For the purposes of this chapter, what we’re really interested in is the effect of drug on mood.gain.
The first thing to do is calculate some descriptive statistics and draw some graphs. In Chapter 4 we
showed you how to do this in JASP using the ‘Split’ box in ‘Descriptives’ – ‘Descriptive Statistics’.
The results are shown in Figure 12.1.

Figure 12.1: JASP screenshot showing descriptives and box plots for mood gain, split by drug admin-
istered
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As the plot makes clear, there is a larger improvement in mood for participants in the Joyzepam
group than for either the Anxifree group or the placebo group. The Anxifree group shows a larger
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mood gain than the control group, but the difference isn’t as large. The question that we want to
answer is are these difference “real”, or are they just due to chance?

12.2

How ANOVA works

In order to answer the question posed by our clinical trial data we’re going to run a one-way ANOVA.
I’m going to start by showing you how to do it the hard way, building the statistical tool from the
ground up and showing you how you could do it if you didn’t have access to any of the cool built-in
ANOVA functions in JASP. And I hope you’ll read it carefully, try to do it the long way once or twice
to make sure you really understand how ANOVA works, and then once you’ve grasped the concept
never ever do it this way again.

The experimental design that I described in the previous section strongly suggests that we’re
interested in comparing the average mood change for the three different drugs. In that sense, we’re
talking about an analysis similar to the t-test (Chapter 10) but involving more than two groups. If
we let µP denote the population mean for the mood change induced by the placebo, and let µA and
µJ denote the corresponding means for our two drugs, Anxifree and Joyzepam, then the (somewhat
pessimistic) null hypothesis that we want to test is that all three population means are identical. That
is, neither of the two drugs is any more effective than a placebo. We can write out this null hypothesis
as:

H0 : it is true that µP “ µA “ µJ
As a consequence, our alternative hypothesis is that at least one of the three different treatments
is different from the others. It’s a bit tricky to write this mathematically, because (as we’ll discuss)
there are quite a few different ways in which the null hypothesis can be false. So for now we’ll just
write the alternative hypothesis like this:

H1 : it is not true that µP “ µA “ µJ

This null hypothesis is a lot trickier to test than any of the ones we’ve seen previously. How shall we
do it? A sensible guess would be to “do an ANOVA”, since that’s the title of the chapter, but it’s
not particularly clear why an “analysis of variances” will help us learn anything useful about the means.
In fact, this is one of the biggest conceptual difficulties that people have when first encountering
ANOVA. To see how this works, I find it most helpful to start by talking about variances. In fact,
what I’m going to do is start by playing some mathematical games with the formula that describes
the variance. That is, we’ll start out by playing around with variances and it will turn out that this
gives us a useful tool for investigating means.
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12.2.1 Two formulas for the variance of Y

First, let’s start by introducing some notation. We’ll use G to refer to the total number of groups.
For our data set there are three drugs, so there are G “ 3 groups. Next, we’ll use N to refer to the
total sample size; there are a total of N “ 18 people in our data set. Similarly, let’s use Nk to denote
the number of people in the k-th group. In our fake clinical trial, the sample size is Nk “ 6 for all
three groups.1 Finally, we’ll use Y to denote the outcome variable. In our case, Y refers to mood
change. Specifically, we’ll use Yik to refer to the mood change experienced by the i-th member of the
k-th group. Similarly, we’ll use ¯Y to be the average mood change, taken across all 18 people in the
experiment, and ¯Yk to refer to the average mood change experienced by the 6 people in group k .

Now that we’ve got our notation sorted out we can start writing down formulas. To start with, let’s
recall the formula for the variance that we used in Section 4.2, way back in those kinder days when
we were just doing descriptive statistics. The sample variance of Y is defined as follows

VarpY q “ 1
N

Gÿ

k“1

Nkÿ

i“1

`
Yik ´ ¯Y

˘2

This formula looks pretty much identical to the formula for the variance in Section 4.2. The only
difference is that this time around I’ve got two summations here: I’m summing over groups (i.e.,
values for k) and over the people within the groups (i.e., values for i). This is purely a cosmetic
detail. If I’d instead used the notation Yp to refer to the value of the outcome variable for person
p in the sample, then I’d only have a single summation. The only reason that we have a double
summation here is that I’ve classified people into groups, and then assigned numbers to people within
groups.

A concrete example might be useful here. Let’s consider this table, in which we have a total of
N “ 5 people sorted into G “ 2 groups. Arbitrarily, let’s say that the “cool” people are group 1 and
the “uncool” people are group 2. It turns out that we have three cool people (N1 “ 3) and two uncool
people (N2 “ 2)

name person group group num. index in group grumpiness
p k i Yik or Yp

Ann 1 cool 1 1 20
Ben 2 cool 1 2 55
Cat 3 cool 1 3 21
Dan 4 uncool 2 1 91
Egg 5 uncool 2 2 22

1When all groups have the same number of observations, the experimental design is said to be “balanced”. Balance
isn’t such a big deal for one-way ANOVA, which is the topic of this chapter. It becomes more important when you start
doing more complicated ANOVAs.
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Notice that I’ve constructed two different labelling schemes here. We have a “person” variable p so
it would be perfectly sensible to refer to Yp as the grumpiness of the p-th person in the sample. For
instance, the table shows that Dan is the fourth so we’d say p “ 4. So, when talking about the
grumpiness Y of this “Dan” person, whoever he might be, we could refer to his grumpiness by saying
that Yp “ 91, for person p “ 4 that is. However, that’s not the only way we could refer to Dan. As
an alternative we could note that Dan belongs to the “uncool” group (k “ 2), and is in fact the first
person listed in the uncool group (i “ 1). So it’s equally valid to refer to Dan’s grumpiness by saying
that Yik “ 91, where k “ 2 and i “ 1.

In other words, each person p corresponds to a unique ik combination, and so the formula that I
gave above is actually identical to our original formula for the variance, which would be

VarpY q “ 1
N

Nÿ

p“1

`
Yp ´ ¯Y

˘2

In both formulas, all we’re doing is summing over all of the observations in the sample. Most of the
time we would just use the simpler Yp notation; the equation using Yp is clearly the simpler of the
two. However, when doing an ANOVA it’s important to keep track of which participants belong in
which groups, and we need to use the Yik notation to do this.

12.2.2 From variances to sums of squares

Okay, now that we’ve got a good grasp on how the variance is calculated, let’s define something
called the total sum of squares, which is denoted SStot . This is very simple. Instead of averaging
the squared deviations, which is what we do when calculating the variance, we just add them up.

So the formula for the total sum of squares is almost identical to the formula for the variance

SStot “
Gÿ

k“1

Nkÿ

i“1

`
Yik ´ ¯Y

˘2

When we talk about analysing variances in the context of ANOVA, what we’re really doing is working
with the total sums of squares rather than the actual variance. One very nice thing about the total
sum of squares is that we can break it up into two different kinds of variation.
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First, we can talk about the within-group sum of squares, in which we look to see how different
each individual person is from their own group mean

SSw “
Gÿ

k“1

Nkÿ

i“1

`
Yik ´ ¯Yk

˘2

where ¯Yk is a group mean. In our example, ¯Yk would be the average mood change experienced
by those people given the k-th drug. So, instead of comparing individuals to the average of all
people in the experiment, we’re only comparing them to those people in the the same group. As a
consequence, you’d expect the value of SSw to be smaller than the total sum of squares, because
it’s completely ignoring any group differences, i.e., whether the drugs will have different effects on
people’s moods.

Next, we can define a third notion of variation which captures only the differences between groups.
We do this by looking at the differences between the group means ¯Yk and grand mean ¯Y .

In order to quantify the extent of this variation, what we do is calculate the between-group sum
of squares

SSb “
Gÿ

k“1

Nkÿ

i“1

`
¯Yk ´ ¯Y

˘2

“
Gÿ

k“1
Nk

`
¯Yk ´ ¯Y

˘2

It’s not too difficult to show that the total variation among people in the experiment SStot is
actually the sum of the differences between the groups SSb and the variation inside the groups SSw .
That is,

SSw ` SSb “ SStot

Yay.

Okay, so what have we found out? We’ve discovered that the total variability associated with
the outcome variable (SStot) can be mathematically carved up into the sum of “the variation due to
the differences in the sample means for the different groups” (SSb) plus “all the rest of the variation”
(SSw )2. How does that help me find out whether the groups have different population means? Um.
Wait. Hold on a second. Now that I think about it, this is exactly what we were looking for. If the null
hypothesis is true then you’d expect all the sample means to be pretty similar to each other, right?
And that would imply that you’d expect SSb to be really small, or at least you’d expect it to be a lot
smaller than “the variation associated with everything else”, SSw . Hmm. I detect a hypothesis test
coming on.

2SSw is also referred to in an independent ANOVA as the error variance, or SSerror
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group 1 group 2 group 3

Between−group variation
(i.e., differences among group means)

group 1 group 2 group 3

Within−group variation
(i.e., deviations from group means)

(a) (b)

Figure 12.2: Graphical illustration of “between groups” variation (panel a) and “within groups” variation
(panel b). On the left the arrows show the differences in the group means. On the right the arrows
highlight the variability within each group.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12.2.3 From sums of squares to the F -test

As we saw in the last section, the qualitative idea behind ANOVA is to compare the two sums of
squares values SSb and SSw to each other. If the between-group variation SSb is large relative to the
within-group variation SSw then we have reason to suspect that the population means for the different
groups aren’t identical to each other. In order to convert this into a workable hypothesis test, there’s
a little bit of “fiddling around” needed. What I’ll do is first show you what we do to calculate our test
statistic, the F ratio, and then try to give you a feel for why we do it this way.

In order to convert our SS values into an F -ratio the first thing we need to calculate is the degrees
of freedom associated with the SSb and SSw values. As usual, the degrees of freedom corresponds
to the number of unique “data points” that contribute to a particular calculation, minus the number
of “constraints” that they need to satisfy. For the within-groups variability what we’re calculating is
the variation of the individual observations (N data points) around the group means (G constraints).
In contrast, for the between groups variability we’re interested in the variation of the group means (G
data points) around the grand mean (1 constraint). Therefore, the degrees of freedom here are:

dfb “ G ´ 1
dfw “ N ´ G

Okay, that seems simple enough. What we do next is convert our summed squares value into a “mean
squares” value, which we do by dividing by the degrees of freedom:

MSb “ SSb
dfb

MSw “ SSw
dfw
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Table 12.1: All of the key quantities involved in an ANOVA organised into a “standard” ANOVA
table. The formulas for all quantities (except the p-value which has a very ugly formula and would be
nightmarishly hard to calculate without a computer) are shown.

df sum of squares mean squares F -statistic p-value

between
groups

dfb “ G ´ 1 SSb “
Gÿ

k“1
Nkp¯Yk ´ ¯Y q2 MSb “ SSb

dfb
F “ MSb

MSw
[complicated]

within
groups

dfw “ N ´ G SSw “
Gÿ

k“1

Nkÿ

i“1
pYik ´ ¯Ykq2 MSw “ SSw

dfw
- -

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Finally, we calculate the F -ratio by dividing the between-groups MS by the within-groups MS:

F “ MSb
MSw

At a very general level, the intuition behind the F statistic is straightforward. Bigger values of F means
that the between-groups variation is large relative to the within-groups variation. As a consequence,
the larger the value of F the more evidence we have against the null hypothesis. But how large does
F have to be in order to actually reject H0? In order to understand this, you need a slightly deeper
understanding of what ANOVA is and what the mean squares values actually are.

The next section discusses that in a bit of detail, but for readers that aren’t interested in the
details of what the test is actually measuring I’ll cut to the chase. In order to complete our hypothesis
test we need to know the sampling distribution for F if the null hypothesis is true. Not surprisingly, the
sampling distribution for the F statistic under the null hypothesis is an F distribution. If you recall our
discussion of the F distribution in Chapter 6, the F distribution has two parameters, corresponding
to the two degrees of freedom involved. The first one df1 is the between groups degrees of freedom
dfb, and the second one df2 is the within groups degrees of freedom dfw .

A summary of all the key quantities involved in a one-way ANOVA, including the formulas showing
how they are calculated, is shown in Table 12.1.

12.2.4 The model for the data and the meaning of F

At a fundamental level ANOVA is a competition between two different statistical models, H0 and
H1. When I described the null and alternative hypotheses at the start of the section, I was a little
imprecise about what these models actually are. I’ll remedy that now, though you probably won’t like
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me for doing so. If you recall, our null hypothesis was that all of the group means are identical to one
another. If so, then a natural way to think about the outcome variable Yik is to describe individual
scores in terms of a single population mean µ, plus the deviation from that population mean. This
deviation is usually denoted "ik and is traditionally called the error or residual associated with that
observation. Be careful though. Just like we saw with the word “significant”, the word “error” has
a technical meaning in statistics that isn’t quite the same as its everyday English definition. In
everyday language, “error” implies a mistake of some kind, but in statistics it doesn’t (or at least,
not necessarily). With that in mind, the word “residual” is a better term than the word “error”. In
statistics both words mean “leftover variability”, that is “stuff” that the model can’t explain.

In any case, here’s what the null hypothesis looks like when we write it as a statistical model

Yik “ µ` "ik

where we make the assumption (discussed later) that the residual values "ik are normally distributed,
with mean 0 and a standard deviation � that is the same for all groups. To use the notation that
we introduced in Chapter 6 we would write this assumption like this

"ik „ Normalp0,�2q

What about the alternative hypothesis, H1? The only difference between the null hypothesis
and the alternative hypothesis is that we allow each group to have a different population mean. So,
if we let µk denote the population mean for the k-th group in our experiment, then the statistical
model corresponding to H1 is

Yik “ µk ` "ik
where, once again, we assume that the error terms are normally distributed with mean 0 and standard
deviation �. That is, the alternative hypothesis also assumes that " „ Normalp0,�2q

Okay, now that we’ve described the statistical models underpinning H0 and H1 in more detail,
it’s now pretty straightforward to say what the mean square values are measuring, and what this
means for the interpretation of F . I won’t bore you with the proof of this but it turns out that the
within-groups mean square, MSw , can be viewed as an estimator (in the technical sense, Chapter 7)
of the error variance �2. The between-groups mean square MSb is also an estimator, but what it
estimates is the error variance plus a quantity that depends on the true differences among the group
means. If we call this quantity Q, then we can see that the F -statistic is basicallya

F “
ˆQ` �̂2
�̂2

where the true value Q “ 0 if the null hypothesis is true, and Q ° 0 if the alternative hypothesis is
true (e.g., Hays 1994, ch. 10). Therefore, at a bare minimum the F value must be larger than 1 to
have any chance of rejecting the null hypothesis. Note that this doesn’t mean that it’s impossible
to get an F -value less than 1. What it means is that if the null hypothesis is true the sampling
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distribution of the F ratio has a mean of 1,b and so we need to see F -values larger than 1 in order
to safely reject the null.

To be a bit more precise about the sampling distribution, notice that if the null hypothesis is
true, both MSb and MSw are estimators of the variance of the residuals "ik . If those residuals are
normally distributed, then you might suspect that the estimate of the variance of "ik is chi-square
distributed, because (as discussed in Section 6.6) that’s what a chi-square distribution is: it’s what
you get when you square a bunch of normally-distributed things and add them up. And since the F
distribution is (again, by definition) what you get when you take the ratio between two things that
are �2 distributed, we have our sampling distribution. Obviously, I’m glossing over a whole lot of
stuff when I say this, but in broad terms, this really is where our sampling distribution comes from.

aIf you read ahead to Chapter 13 and look at how the “treatment effect” at level k of a factor is defined in terms
of the ↵k values (see Section 13.2), it turns out that Q refers to a weighted mean of the squared treatment effects,
Q “ p∞G

k“1 Nk↵
2
kq{pG ´ 1q.

bOr, if we want to be sticklers for accuracy, 1` 2
df2´2 .

12.2.5 A worked example

The previous discussion was fairly abstract and a little on the technical side, so I think that at this
point it might be useful to see a worked example. For that, let’s go back to the clinical trial data that
I introduced at the start of the chapter. The descriptive statistics that we calculated at the beginning
tell us our group means: an average mood gain of 0.45 for the placebo, 0.72 for Anxifree, and 1.48
for Joyzepam. With that in mind, let’s party like it’s 1899 3 and start doing some pencil and paper
calculations. I’ll only do this for the first 5 observations because it’s not bloody 1899 and I’m very
lazy. Let’s start by calculating SSw , the within-group sums of squares. First, let’s draw up a nice
table to help us with our calculations:

group outcome
k Yik

placebo 0.5
placebo 0.3
placebo 0.1
anxifree 0.6
anxifree 0.4

At this stage, the only thing I’ve included in the table is the raw data itself. That is, the grouping
variable (i.e., drug) and outcome variable (i.e. mood.gain) for each person. Note that the outcome
variable here corresponds to the Yik value in our equation previously. The next step in the calculation
is to write down, for each person in the study, the corresponding group mean, ¯Yk . This is slightly
repetitive but not particularly difficult since we already calculated those group means when doing our

3Or, to be precise, party like “it’s 1899 and we’ve got no friends and nothing better to do with our time than do some
calculations that wouldn’t have made any sense in 1899 because ANOVA didn’t exist until about the 1920s”.
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descriptive statistics:

group outcome group mean
k Yik ¯Yk

placebo 0.5 0.45
placebo 0.3 0.45
placebo 0.1 0.45
anxifree 0.6 0.72
anxifree 0.4 0.72

Now that we’ve written those down, we need to calculate, again for every person, the deviation from
the corresponding group mean. That is, we want to subtract Yik ´ ¯Yk . After we’ve done that, we
need to square everything. When we do that, here’s what we get:

group outcome group mean dev. from group mean squared deviation
k Yik ¯Yk Yik ´ ¯Yk pYik ´ ¯Ykq2

placebo 0.5 0.45 0.05 0.0025
placebo 0.3 0.45 -0.15 0.0225
placebo 0.1 0.45 -0.35 0.1225
anxifree 0.6 0.72 -0.12 0.0136
anxifree 0.4 0.72 -0.32 0.1003

The last step is equally straightforward. In order to calculate the within-group sum of squares we just
add up the squared deviations across all observations:

SSw “ 0.0025` 0.0225` 0.1225` 0.0136` 0.1003
“ 0.2614

Of course, if we actually wanted to get the right answer we’d need to do this for all 18 observations
in the data set, not just the first five. We could continue with the pencil and paper calculations if we
wanted to, but it’s pretty tedious. Alternatively, it’s not too hard to do this in a dedicated spreadsheet
programme such as OpenOffice or Excel. Try and do it yourself. When you do it you should end up
with a within-group sum of squares value of 1.39.

Okay. Now that we’ve calculated the within groups variation, SSw , it’s time to turn our attention
to the between-group sum of squares, SSb. The calculations for this case are very similar. The main
difference is that instead of calculating the differences between an observation Yik and a group mean
¯Yk for all of the observations, we calculate the differences between the group means ¯Yk and the grand
mean ¯Y (in this case 0.88) for all of the groups.

group group mean grand mean deviation squared deviations
k ¯Yk ¯Y ¯Yk ´ ¯Y p¯Yk ´ ¯Y q2

placebo 0.45 0.88 -0.43 0.19
anxifree 0.72 0.88 -0.16 0.03
joyzepam 1.48 0.88 0.60 0.36

However, for the between group calculations we need to multiply each of these squared deviations by
Nk , the number of observations in the group. We do this because every observation in the group (all
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Nk of them) is associated with a between group difference. So if there are six people in the placebo
group and the placebo group mean differs from the grand mean by 0.19, then the total between group
variation associated with these six people is 6ˆ 0.19 “ 1.14. So we have to extend our little table of
calculations:

group ... squared deviations sample size weighted squared dev
k ... p¯Yk ´ ¯Y q2 Nk Nkp¯Yk ´ ¯Y q2

placebo ... 0.19 6 1.14
anxifree ... 0.03 6 0.18
joyzepam ... 0.36 6 2.16

And so now our between group sum of squares is obtained by summing these “weighted squared
deviations” over all three groups in the study:

SSb “ 1.14` 0.18` 2.16
“ 3.48

As you can see, the between group calculations are a lot shorter. Now that we’ve calculated our
sums of squares values, SSb and SSw , the rest of the ANOVA is pretty painless. The next step is to
calculate the degrees of freedom. Since we have G “ 3 groups and N “ 18 observations in total our
degrees of freedom can be calculated by simple subtraction:

dfb “ G ´ 1 “ 2

dfw “ N ´ G “ 15

Next, since we’ve now calculated the values for the sums of squares and the degrees of freedom, for
both the within-groups variability and the between-groups variability, we can obtain the mean square
values by dividing one by the other:

MSb “ SSb
dfb

“ 3.48

2

“ 1.74

MSw “ SSw
dfw

“ 1.39

15

“ 0.09

We’re almost done. The mean square values can be used to calculate the F -value, which is the
test statistic that we’re interested in. We do this by dividing the between-groups MS value by the
within-groups MS value.

F “ MSb
MSw

“ 1.74

0.09
“ 19.3

Woohooo! This is terribly exciting, yes? Now that we have our test statistic, the last step is to find
out whether the test itself gives us a significant result. As discussed in Chapter 8 back in the “old
days” what we’d do is open up a statistics textbook or flick to the back section which would actually
have a huge lookup table and we would find the threshold F value corresponding to a particular value
of alpha (the null hypothesis rejection region), e.g. 0.05, 0.01 or 0.001, for 2 and 15 degrees of
freedom. Doing it this way would give us a threshold F value for an alpha of 0.001 of 11.34. As this
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is less than our calculated F value we say that p † 0.001. But those were the old days, and nowadays
fancy stats software calculates the exact p-value for you. In fact, the exact p-value is 0.000071. So,
unless we’re being extremely conservative about our Type I error rate, we’re pretty much guaranteed
to reject the null hypothesis.

At this point, we’re basically done. Having completed our calculations, it’s traditional to organise
all these numbers into an ANOVA table like the one in Table 12.1. For our clinical trial data, the
ANOVA table would look like this:

df sum of squares mean squares F -statistic p-value
between groups 2 3.48 1.74 19.3 0.000071
within groups 15 1.39 0.09 - -

These days, you’ll probably never have much reason to want to construct one of these tables yourself,
but you will find that almost all statistical software (JASP included) tends to organise the output of
an ANOVA into a table like this, so it’s a good idea to get used to reading them. However, although
the software will output a full ANOVA table, there’s almost never a good reason to include the whole
table in your write up. A pretty standard way of reporting this result would be to write something like
this:

One-way ANOVA showed a significant effect of drug on mood gain (F p2, 15q “ 19.3, p †
.001).

Sigh. So much work for one short sentence.

12.3

Running an ANOVA in JASP

I’m pretty sure I know what you’re thinking after reading the last section, especially if you followed
my advice and did all of that by pencil and paper (i.e., in a spreadsheet) yourself. Doing the ANOVA
calculations yourself sucks. There’s quite a lot of calculations that we needed to do along the way, and
it would be tedious to have to do this over and over again every time you wanted to do an ANOVA.

12.3.1 Using JASP to specify your ANOVA

To make life easier for you, JASP can do ANOVA..hurrah! Go to the ‘ANOVA’ - ‘ANOVA’ analysis,
and move the mood.gain variable across so it is in the ‘Dependent Variable’ box, and then move the
drug variable across so it is in the ‘Fixed Factors’ box. This should give the results as shown in Figure
12.3. 4 Note I have also checked the ⌘2 checkbox, pronounced “eta squared”, under the ‘Estimates

4The JASP results are more accurate than the ones in the text above, due to rounding errors.
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of effect size’ option that can be found in ‘Additional Options,’ and this is also shown on the results
table. We will come back to effect sizes a bit later.

Figure 12.3: JASP results table for ANOVA of mood gain by drug administered
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The JASP results table shows you the sums of squares values, the degrees of freedom, and a
couple of other quantities that we’re not really interested in right now. Notice, however, that JASP
doesn’t use the names “between-group” and “within-group”. Instead, it tries to assign more meaningful
names. In our particular example, the between groups variance corresponds to the effect that the drug
has on the outcome variable, and the within groups variance corresponds to the “leftover” variability so
it calls that the residual error. If we compare these numbers to the numbers that I calculated by hand
in Section 12.2.5, you can see that they’re more or less the same, apart from rounding errors. The
between groups sums of squares is SSb “ 3.453, the within groups sums of squares is SSw “ 1.392,
and the degrees of freedom are 2 and 15 respectively. We also get the F -value and the p-value and,
again, these are more or less the same, give or take rounding errors, to the numbers that we calculated
ourselves when doing it the long and tedious way.

12.4

Effect size

There’s a few different ways you could measure the effect size in an ANOVA, but the most commonly
used measures are ⌘2 (eta squared) and partial ⌘2. For a one way analysis of variance they’re identical
to each other, so for the moment I’ll just explain ⌘2. The definition of ⌘2 is actually really simple

⌘2 “ SSb
SStot
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That’s all it is. So when I look at the ANOVA table in Figure 12.3, I see that SSb “ 3.45 and
SStot “ 3.45` 1.39 “ 4.84. Thus we get an ⌘2 value of

⌘2 “ 3.45
4.84

“ 0.71

The interpretation of ⌘2 is equally straightforward. It refers to the proportion of the variability in
the outcome variable (mood.gain) that can be explained in terms of the predictor (drug). A value of
⌘2 “ 0 means that there is no relationship at all between the two, whereas a value of ⌘2 “ 1 means
that the relationship is perfect. Better yet, the ⌘2 value is very closely related to R2, as discussed
previously in Section 11.6.1), and has an equivalent interpretation.

Although many statistics text books suggest ⌘2 as the default effect size measure in ANOVA,
there’s an interesting blog post by Daniel Lakens suggesting that eta-squared is perhaps not the
best measure of effect size in real world data analysis, because it can be a biased estimator (http:
//daniellakens.blogspot.com.au/2015/06/why-you-should-use-omega-squared.html).
Usefully, there is also an option in JASP to specify omega-squared (!2), which is less biased, alongside
eta-squared.

12.5

Multiple comparisons and post hoc tests

Any time you run an ANOVA with more than two groups and you end up with a significant effect, the
first thing you’ll probably want to ask is which groups are actually different from one another. In our
drugs example, our null hypothesis was that all three drugs (placebo, Anxifree and Joyzepam) have
the exact same effect on mood. But if you think about it, the null hypothesis is actually claiming three
different things all at once here. Specifically, it claims that:

• Your competitor’s drug (Anxifree) is no better than a placebo (i.e., µA “ µP )

• Your drug (Joyzepam) is no better than a placebo (i.e., µJ “ µP )

• Anxifree and Joyzepam are equally effective (i.e., µJ “ µA)

If any one of those three claims is false, then the null hypothesis is also false. So, now that we’ve
rejected our null hypothesis, we’re thinking that at least one of those things isn’t true. But which
ones? All three of these propositions are of interest. Since you certainly want to know if your new
drug Joyzepam is better than a placebo, it would be nice to know how well it stacks up against an
existing commercial alternative (i.e., Anxifree). It would even be useful to check the performance of
Anxifree against the placebo. Even if Anxifree has already been extensively tested against placebos
by other researchers, it can still be very useful to check that your study is producing similar results to
earlier work.

When we characterise the null hypothesis in terms of these three distinct propositions, it becomes
clear that there are eight possible “states of the world” that we need to distinguish between:
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possibility: is µP “ µA? is µP “ µJ? is µA “ µJ? which hypothesis?
1 X X X null
2 X X alternative
3 X X alternative
4 X alternative
5 X X alternative
6 X alternative
7 X alternative
8 alternative

By rejecting the null hypothesis, we’ve decided that we don’t believe that #1 is the true state of the
world. The next question to ask is, which of the other seven possibilities do we think is right? When
faced with this situation, its usually helps to look at the data. For instance, if we look at the plots
in Figure 12.1, it’s tempting to conclude that Joyzepam is better than the placebo and better than
Anxifree, but there’s no real difference between Anxifree and the placebo. However, if we want to get
a clearer answer about this, it might help to run some tests.

12.5.1 Running “pairwise” t-tests

How might we go about solving our problem? Given that we’ve got three separate pairs of means
(placebo versus Anxifree, placebo versus Joyzepam, and Anxifree versus Joyzepam) to compare, what
we could do is run three separate t-tests and see what happens. This is easy to do in JASP. Go to the
ANOVA ‘Post Hoc Tests’ options, move the ‘drug’ variable across into the active box on the right.
This will immediately produce a neat table showing all the pairwise t-test comparisons amongst the
three levels of the drug variable, as in Figure 12.4.

Figure 12.4: Pairwise t-tests as post hoc comparisons in JASP
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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12.5.2 Corrections for multiple testing

In the previous section I hinted that there’s a problem with just running lots and lots of t-tests.
The concern is that, when running these analyses, what we’re doing is going on a “fishing expedition”.
We’re running lots and lots of tests without much theoretical guidance in the hope that some of them
come up significant. This kind of theory-free search for group differences is referred to as post hoc
analysis (“post hoc” being Latin for “after this”).5

It’s okay to run post hoc analyses, but a lot of care is required. For instance, the analysis that
I ran in the previous section should be avoided, as each individual t-test is designed to have a 5%
Type I error rate (i.e., ↵ “ .05) and I ran three of these tests. Imagine what would have happened
if my ANOVA involved 10 different groups, and I had decided to run 45 “post hoc” t-tests to try to
find out which ones were significantly different from each other, you’d expect 2 or 3 of them to come
up significant by chance alone. As we saw in Chapter 8, the central organising principle behind null
hypothesis testing is that we seek to control our Type I error rate, but now that I’m running lots of
t-tests at once in order to determine the source of my ANOVA results, my actual Type I error rate
across this whole family of tests has gotten completely out of control.

The usual solution to this problem is to introduce an adjustment to the p-value, which aims to
control the total error rate across the family of tests (see Shaffer 1995). An adjustment of this form,
which is usually (but not always) applied because one is doing post hoc analysis, is often referred
to as a correction for multiple comparisons, though it is sometimes referred to as “simultaneous
inference”. In any case, there are quite a few different ways of doing this adjustment. I’ll discuss a
few of them in this section and in Section 13.8, but you should be aware that there are many other
methods out there (see, e.g., Hsu 1996).

12.5.3 Bonferroni corrections

The simplest of these adjustments is called the Bonferroni correction (Dunn 1961), and it’s very
very simple indeed. Suppose that my post hoc analysis consists of m separate tests, and I want to
ensure that the total probability of making any Type I errors at all is at most ↵.6 If so, then the
Bonferroni correction just says “multiply all your raw p-values by m”. If we let p denote the original
p-value, and let p1

j be the corrected value, then the Bonferroni correction tells that:

p1 “ m ˆ p

And therefore, if you’re using the Bonferroni correction, you would reject the null hypothesis if p1 † ↵.
The logic behind this correction is very straightforward. We’re doing m different tests, so if we arrange

5If you do have some theoretical basis for wanting to investigate some comparisons but not others, it’s a different
story. In those circumstances you’re not really running “post hoc” analyses at all, you’re making “planned comparisons”.
I do talk about this situation later in the book (Section 13.9), but for now I want to keep things simple.

6It’s worth noting in passing that not all adjustment methods try to do this. What I’ve described here is an approach
for controlling “family wise Type I error rate”. However, there are other post hoc tests that seek to control the “false
discovery rate”, which is a somewhat different thing.
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it so that each test has a Type I error rate of at most ↵{m, then the total Type I error rate across
these tests cannot be larger than ↵. That’s pretty simple, so much so that in the original paper, the
author writes,

The method given here is so simple and so general that I am sure it must have been used
before this. I do not find it, however, so can only conclude that perhaps its very simplicity
has kept statisticians from realizing that it is a very good method in some situations (Dunn
1961, pp 52-53)

To use the Bonferroni correction in JASP, just click on the ‘Bonferroni’ checkbox in the ‘Correction’
options, and you will see another column added to the ANOVA results table showing the adjusted
p-values for the Bonferroni correction (12.4).

12.5.4 Holm corrections

Although the Bonferroni correction is the simplest adjustment out there, it’s not usually the best
one to use. One method that is often used instead is the Holm correction (Holm 1979). The idea
behind the Holm correction is to pretend that you’re doing the tests sequentially, starting with the
smallest (raw) p-value and moving onto the largest one. For the j-th largest of the p-values, the
adjustment is either

p1
j “ j ˆ pj

(i.e., the biggest p-value remains unchanged, the second biggest p-value is doubled, the third biggest
p-value is tripled, and so on), or

p1
j “ p1

j`1

whichever one is larger. This might sound a little confusing, so let’s go through it a little more slowly.
Here’s what the Holm correction does. First, you sort all of your p-values in order, from smallest to
largest. For the smallest p-value all you do is multiply it by m, and you’re done. However, for all the
other ones it’s a two-stage process. For instance, when you move to the second smallest p value, you
first multiply it by m´ 1. If this produces a number that is bigger than the adjusted p-value that you
got last time, then you keep it. But if it’s smaller than the last one, then you copy the last p-value. To
illustrate how this works, consider the table below, which shows the calculations of a Holm correction
for a collection of five p-values:

raw p rank j p ˆ j Holm p
.001 5 .005 .005
.005 4 .020 .020
.019 3 .057 .057
.022 2 .044 .057
.103 1 .103 .103

Hopefully that makes things clear.
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Although it’s a little harder to calculate, the Holm correction has some very nice properties. It’s
more powerful than Bonferroni (i.e., it has a lower Type II error rate) but, counter-intuitive as it might
seem, it has the same Type I error rate. As a consequence, in practice there’s never any reason to use
the simpler Bonferroni correction since it is always outperformed by the slightly more elaborate Holm
correction. Because of this, the Holm correction should be your go to multiple comparison correction.
Figure 12.4 shows both the Bonferroni and the Holm corrected p-values.

12.5.5 Writing up the post hoc test

Finally, having run the post hoc analysis to determine which groups are significantly different to
one another, you might write up the result like this:

Post hoc tests (using the Holm correction to adjust p) indicated that Joyzepam produced
a significantly larger mood change than both Anxifree (p “ .001) and the placebo (p †
0.001). We found no evidence that Anxifree performed better than the placebo (p “ .15).

Or, if you don’t like the idea of just reporting p † 0.001, you can compute exact p-values by going to
‘Preferences’ - ‘Results’, and then selecting ‘Display exact p-values’. Either way, the key thing is that
you indicate that you used Holm’s correction to adjust the p-values. And of course, I’m assuming that
elsewhere in the write up you’ve included the relevant descriptive statistics (i.e., the group means and
standard deviations), since these p-values on their own aren’t terribly informative.

12.6

Assumptions of one-way ANOVA

Like any statistical test, analysis of variance relies on some assumptions about the data, specifically
the residuals. There are three key assumptions that you need to be aware of: normality, homogeneity
of variance and independence.

If you remember back to Section 12.2.4, which I hope you at least skimmed even if you didn’t read
the whole thing, I described the statistical models underpinning ANOVA in this way:

H0 : Yik “ µ` "ik
H1 : Yik “ µk ` "ik

In these equations µ refers to a single grand population mean which is the same for all groups,
and µk is the population mean for the k-th group. Up to this point we’ve been mostly interested
in whether our data are best described in terms of a single grand mean (the null hypothesis) or in
terms of different group-specific means (the alternative hypothesis). This makes sense, of course,
as that’s actually the important research question! However, all of our testing procedures have,
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implicitly, relied on a specific assumption about the residuals, "ik , namely that

"ik „ Normalp0,�2q

None of the maths works properly without this bit. Or, to be precise, you can still do all the
calculations and you’ll end up with an F -statistic, but you have no guarantee that this F -statistic
actually measures what you think it’s measuring, and so any conclusions that you might draw on
the basis of the F test might be wrong.

So, how do we check whether the assumption about the residuals is accurate? Well, as I indicated
above, there are three distinct claims buried in this one statement, and we’ll consider them separately.

• Homogeneity of variance. Notice that we’ve only got the one value for the population standard
deviation (i.e., �), rather than allowing each group to have it’s own value (i.e., �k). This is
referred to as the homogeneity of variance (sometimes called homoscedasticity) assumption.
ANOVA assumes that the population standard deviation is the same for all groups. We’ll talk
about this extensively in Section 12.6.1.

• Normality. The residuals are assumed to be normally distributed. As we saw in Section 10.8,
we can assess this by looking at QQ plots (or running a Shapiro-Wilk test. I’ll talk about this
more in an ANOVA context in Section 12.6.4.

• Independence. The independence assumption is a little trickier. What it basically means is
that, knowing one residual tells you nothing about any other residual. All of the "ik values are
assumed to have been generated without any “regard for” or “relationship to” any of the other
ones. There’s not an obvious or simple way to test for this, but there are some situations that
are clear violations of this. For instance, if you have a repeated-measures design, where each
participant in your study appears in more than one condition, then independence doesn’t hold.
There’s a special relationship between some observations, namely those that correspond to the
same person! When that happens, you need to use something like repeated measures ANOVA
(see Section 12.8).

12.6.1 Checking the homogeneity of variance assumption

To make the preliminary test on variances is rather like putting to sea in a rowing boat to
find out whether conditions are sufficiently calm for an ocean liner to leave port!

– George Box (Box 1953)

There’s more than one way to skin a cat, as the saying goes, and more than one way to test the
homogeneity of variance assumption, too (though for some reason no-one made a saying out of that).
The most commonly used test for this that I’ve seen in the literature is the Levene test (Levene
1960), and the closely related Brown-Forsythe test (Brown and Forsythe 1974).
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Regardless of whether you’re doing the standard Levene test or the Brown-Forsythe test, the test
statistic, which is sometimes denoted F but also sometimes written as W , is calculated in exactly the
same way that the F -statistic for the regular ANOVA is calculated, just using a Zik rather than Yik .
With that in mind, we can go on to look at how to run the test in JASP.

The Levene test is shockingly simple. Suppose we have our outcome variable Yik . All we do is define
a new variable, which I’ll call Zik , corresponding to the absolute deviation from the group mean

Zik “
ˇ̌
Yik ´ ¯Yk

ˇ̌

Okay, what good does this do us? Well, let’s take a moment to think about what Zik actually is
and what we’re trying to test. The value of Zik is a measure of how the i-th observation in the
k-th group deviates from its group mean. And our null hypothesis is that all groups have the same
variance, i.e., the same overall deviations from the group means! So the null hypothesis in a Levene
test is that the population means of Z are identical for all groups. Hmm. So what we need now is
a statistical test of the null hypothesis that all group means are identical. Where have we seen that
before? Oh right, that’s what ANOVA is, and so all that the Levene test does is run an ANOVA on
the new variable Zik .

What about the Brown-Forsythe test? Does that do anything particularly different? Nope.
The only change from the Levene test is that it constructs the transformed variable Z in a slightly
different way, using deviations from the group medians rather than deviations from the group means.
That is, for the Brown-Forsythe test

Zik “ |Yik ´ mediankpY q|

where mediankpY q is the median for group k .

12.6.2 Running the Levene test in JASP

Okay, so how do we run the Levene test? Simple really - under the ANOVA ‘Assumption Checks’
option, just click on the ‘Homogeneity tests’ checkbox. If we look at the output, shown in Figure
12.5, we see that the test is non-significant pF2,15 “ 1.45, p “ .266q, so it looks like the homogeneity
of variance assumption is fine. However, looks can be deceptive! If your sample size is pretty big,
then the Levene test could show up a significant effect (i.e. p † .05) even when the homogeneity of
variance assumption is not violated to an extent which troubles the robustness of ANOVA. This was
the point George Box was making in the quote above. Similarly, if your sample size is quite small, then
the homogeneity of variance assumption might not be satisfied and yet a Levene test could be non-
significant (i.e. p ° .05). What this means is that, alongside any statistical test of the assumption
being met, you should always plot the standard deviation around the means for each group / category
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Figure 12.5: Levene test output for one-way ANOVA in JASP
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

in the analysis...just to see if they look fairly similar (i.e. homogeneity of variance) or not.

12.6.3 Removing the homogeneity of variance assumption

In our example, the homogeneity of variance assumption turned out to be a pretty safe one:
the Levene test came back non-significant (notwithstanding that we should also look at the plot of
standard deviations), so we probably don’t need to worry. However, in real life we aren’t always that
lucky. How do we save our ANOVA when the homogeneity of variance assumption is violated? If you
recall from our discussion of t-tests, we’ve seen this problem before. The Student t-test assumes equal
variances, so the solution was to use the Welch t-test, which does not. In fact, Welch (1951) also
showed how we can solve this problem for ANOVA too (the Welch one-way test). It’s implemented
in JASP using the One-Way ANOVA analysis. To implement the Welch correction, you simply need to
choose the option ‘Welch’ under ‘Assumption Checks’ – ‘Homogeneity corrections’. The result is
displayed in Figure 12.6.

Figure 12.6: Welch’s homogeneity correction as part of the One Way ANOVA analysis in JASP
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To understand what’s happening here, let’s compare these numbers to what we got earlier in Sec-
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tion 12.3 when we ran our original ANOVA. To save you the trouble of flicking back, this is what we
got last time: F p2, 15q “ 18.611, p † 0.001, also shown as None under Homogeneity Correction in
the One-Way ANOVA shown in Figure 12.6.

Okay, so originally our ANOVA gave us the result F p2, 15q “ 18.6, whereas the Welch correction
gave us F p2, 9.49q “ 26.32. In other words, the Welch correction has reduced the within-groups
degrees of freedom from 15 to 9.49, and as a result the F -value has increased from 18.6 to 26.32.

12.6.4 Checking the normality assumption

Testing the normality assumption is relatively straightforward. We covered most of what you need
to know in Section 10.8. The only thing we really need to do is draw a QQ plot7. The QQ plot can be
produced in JASP by going to ‘Assumption Checks’ and checking ‘Q-Q plot of residuals’. The result
is shown in Figure 12.7 and it looks pretty normal to me.

12.7

Removing the normality assumption

Now that we’ve seen how to check for normality, we are led naturally to ask what we can do to address
violations of normality. In the context of a one-way ANOVA, the easiest solution is probably to switch
to a non-parametric test (i.e., one that doesn’t rely on any particular assumption about the kind of
distribution involved). We’ve seen non-parametric tests before, in Chapter 10. When you only have
two groups, the Mann-Whitney or the Wilcoxon test provides the non-parametric alternative that you
need. When you’ve got three or more groups, you can use the Kruskal-Wallis rank sum test (Kruskal
and Wallis 1952). So that’s the test we’ll talk about next.

12.7.1 The logic behind the Kruskal-Wallis test

The Kruskal-Wallis test is surprisingly similar to ANOVA, in some ways. In ANOVA we started with
Yik , the value of the outcome variable for the ith person in the kth group. For the Kruskal-Wallis test
what we’ll do is rank order all of these Yik values and conduct our analysis on the ranked data.

7We should also run a Shapiro-Wilk text, but that functionality is currently not available in JASP. If the Shapiro-Wilk
test is not significant (i.e. p † .05) then this indicates that the assumption of normality is not violated. However, as
with Levene’s test, if the sample size is large then a significant Shapiro-Wilk test may in fact be a false positive, where
the assumption of normality is not violated in any substantive problematic sense for the analysis. And, similarly, a very
small sample can produce false negatives. That’s why a visual inspection of the QQ plot is important.
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Figure 12.7: QQ plot produced from JASP
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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So let’s let Rik refer to the ranking given to the ith member of the kth group. Now, let’s calculate
¯Rk , the average rank given to observations in the kth group

¯Rk “ 1

NK

ÿ

i

Rik

and let’s also calculate ¯R, the grand mean rank

¯R “ 1
N

ÿ

i

ÿ

k

Rik

Now that we’ve done this, we can calculate the squared deviations from the grand mean rank
¯R. When we do this for the individual scores, i.e., if we calculate pRik ´ ¯Rq2, what we have is a
“nonparametric” measure of how far the ik-th observation deviates from the grand mean rank. When
we calculate the squared deviation of the group means from the grand means, i.e., if we calculate
p ¯Rk ´ ¯Rq2, then what we have is a nonparametric measure of how much the group deviates from
the grand mean rank. With this in mind, we’ll follow the same logic that we did with ANOVA and
define our ranked sums of squares measures, much like we did earlier. First, we have our “total
ranked sums of squares”

RSStot “
ÿ

k

ÿ

i

pRik ´ ¯Rq2

and we can define the “between groups ranked sums of squares” like this

RSSb “ ∞
k

∞
ip ¯Rk ´ ¯Rq2

“ ∞
k Nkp ¯Rk ´ ¯Rq2

So, if the null hypothesis is true and there are no true group differences at all, you’d expect the
between group rank sums RSSb to be very small, much smaller than the total rank sums RSStot .
Qualitatively this is very much the same as what we found when we went about constructing the
ANOVA F -statistic, but for technical reasons the Kruskal-Wallis test statistic, usually denoted K,
is constructed in a slightly different way,

K “ pN ´ 1q ˆ RSSb
RSStot

and if the null hypothesis is true, then the sampling distribution of K is approximately chi-square
with G ´ 1 degrees of freedom (where G is the number of groups). The larger the value of K, the
less consistent the data are with the null hypothesis, so this is a one-sided test. We reject H0 when
K is sufficiently large.
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12.7.2 Additional details

The description in the previous section illustrates the logic behind the Kruskal-Wallis test. At a
conceptual level, this is the right way to think about how the test works. However, from a purely
mathematical perspective it’s needlessly complicated. I won’t show you the derivation, but you can
use a bit of algebraic jiggery-pokerya to show that the equation for K can be rewritten as

K “ 12

NpN ´ 1q
ÿ

k

Nk ¯R
2
k ´ 3pN ` 1q

It’s this last equation that you sometimes see given for K. This is way easier to calculate than
the version I described in the previous section, but it’s just that it’s totally meaningless to actual
humans. It’s probably best to think of K the way I described it earlier, as an analogue of ANOVA
based on ranks. But keep in mind that the test statistic that gets calculated ends up with a rather
different look to it than the one we used for our original ANOVA.

But wait, there’s more! Dear lord, why is there always more? The story I’ve told so far is only
actually true when there are no ties in the raw data. That is, if there are no two observations that
have exactly the same value. If there are ties, then we have to introduce a correction factor to
these calculations. At this point I’m assuming that even the most diligent reader has stopped caring
(or at least formed the opinion that the tie-correction factor is something that doesn’t require their
immediate attention). So I’ll very quickly tell you how it’s calculated, and omit the tedious details
about why it’s done this way. Suppose we construct a frequency table for the raw data, and let fj
be the number of observations that have the j-th unique value. This might sound a bit abstract, so
here’s a concrete example from the frequency table of mood.gain from the clinicaltrials.csv
data set:

0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 1.1 1.2 1.3 1.4 1.7 1.8
1 1 2 1 1 2 1 1 1 1 2 2 1 1

Looking at this table, notice that the third entry in the frequency table has a value of 2. Since this
corresponds to a mood.gain of 0.3, this table is telling us that two people’s mood increased by 0.3.
More to the point, in the mathematical notation I introduced above, this is telling us that f3 “ 2.
Yay. So, now that we know this, the tie correction factor (TCF) is:

TCF “ 1´
∞
j fj
3 ´ fj

N3 ´ N
The tie-corrected value of the Kruskal-Wallis statistic is obtained by dividing the value of K by
this quantity. It is this tie-corrected version that JASP calculates. And at long last, we’re actually
finished with the theory of the Kruskal-Wallis test. I’m sure you’re all terribly relieved that I’ve cured
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you of the existential anxiety that naturally arises when you realise that you don’t know how to
calculate the tie-correction factor for the Kruskal-Wallis test. Right?

aA technical term.

12.7.3 How to run the Kruskal-Wallis test in JASP

Despite the horror that we’ve gone through in trying to understand what the Kruskal-Wallis test
actually does, it turns out that running the test is pretty painless, since JASP has an analysis as part
of the ANOVA analysis set called ‘Nonparametrics’. All you need to do is move the grouping variable
drug into the active box. What this gives us is a Kruskal-Wallis �2 = 12.076, df = 2, p-value = 0.002,
as in Figure 12.8

Figure 12.8: Kruskall-Wallis one-way non-parametric ANOVA in JASP
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12.8

Repeated measures one-way ANOVA

The one-way repeated measures ANOVA test is a statistical method of testing for significant differ-
ences between three or more groups where the same participants are used in each group (or each
participant is closely matched with participants in other experimental groups). For this reason, there
should always be an equal number of scores (data points) in each experimental group. This type of
design and analysis can also be called a ‘related ANOVA’ or a ‘within-subjects ANOVA’.

The logic behind a repeated measures ANOVA is very similar to that of an independent ANOVA
(sometimes called a ‘between-subjects’ ANOVA). You’ll remember that earlier we showed that in
a between-subjects ANOVA total variability is partitioned into between-groups variability (SSb) and
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within-groups variability (SSw ), and after each is divided by the respective degrees of freedom to give
MSb and MSw (see Table 12.1) the F-ratio is calculated as:

F “ MSb
MSw

In a repeated measures ANOVA, the F-ratio is calculated in a similar way, but whereas in an
independent ANOVA the within-group variability (SSw ) is used as the basis for the MSw denominator,
in a repeated measures ANOVA the SSw is partioned into two parts. As we are using the same subjects
in each group, we can remove the variability due to the individual differences between subjects (referred
to as SSsubjects) from the within-groups variability. We won’t go into too much technical detail about
how this is done, but essentially each subject becomes a level of a factor called subjects. The variability
in this within-subjects factor is then calculated in the same way as any between-subjects factor. And
then we can subtract SSsubjects from SSw to provide a smaller SSerror term:

Independent ANOVA: SSerror = SSw

Repeated Measures ANOVA: SSerror = SSw - SSsubjects

This change in SSerror term often leads to a more powerful statistical test, but this does depend on
whether the reduction in the SSerror more than compensates for the reduction in degrees of freedom
for the error term (as degrees of freedom go from (n - k)8 to (n - 1)(k - 1) (remembering that there
are more subjects in the independent ANOVA design).

12.8.1 Repeated measures ANOVA in JASP

First, we need some data. Geschwind (1972) has suggested that the exact nature of a patient’s
language deficit following a stroke can be used to diagnose the specific region of the brain that has
been damaged. A researcher is concerned with identifying the specific communication difficulties
experienced by six patients suffering from Broca’s Aphasia (a language deficit commonly experienced
following a stroke).

The patients were required to complete three word recognition tasks. On the first (speech pro-
duction) task, patients were required to repeat single words read out aloud by the researcher. On the
second (conceptual) task, designed to test word comprehension, patients were required to match a
series of pictures with their correct name. On the third (syntax) task, designed to test knowledge
of correct word order, patients were asked to reorder syntactically incorrect sentences. Each patient
completed all three tasks. The order in which patients attempted the tasks was counterbalanced
between participants. Each task consisted of a series of 10 attempts. The number of attempts suc-
cessfully completed by each patient are shown in Table 12.2. You’ll find these data in the broca.csv
file, which you can load into JASP.

8(n - k) : (number of subjects - number of groups)
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Table 12.2: Number of attempts successfully completed on three experimental tasks.

Participant Speech Conceptual Syntax
1 8 7 6
2 7 8 6
3 9 5 3
4 5 4 5
5 6 6 2
6 8 7 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To perform a one-way repeated measures ANOVA in JASP, click ‘ANOVA’ - ‘Repeated Measures
ANOVA’ and then perform the following (see Figure 12.9),

• Enter a Repeated Measures Factor Name. This should be a label that you choose to describe
the conditions repeated by all participants. For example, to describe the speech, conceptual and
syntax tasks completed by all participants a suitable label would be ‘Task’. Note that this new
factor name represents the independent variable in the analysis. To accomplish this in JASP,
simply click on the ‘RM Factor 1’ name; it will become highlighted and await its new name –
simply type it!
• Next you’ll want to name each level of the ‘Task’ factor. Note that you’ll need to add a third

level in the Repeated Measures Factors text box, as there are three levels representing the three
tasks: speech, conceptual, and syntax. Change the labels of the levels accordingly; simply click
on each and type the new name.
• Then move each of the variables in the left box across to the ‘Repeated Measures Cells’ text

box. Make sure the variable names match the level names you specified earlier.
• Finally, under the Assumption Checks option, tick the “Sphericity checks” text box (trust me for

now!).

The JASP output for the repeated measures ANOVA is produced as shown in Figures 12.10.
Before looking at the results, we should take a look at Mauchly’s Test of Sphericity, which tests the
hypothesis that the variances of the differences between the conditions are equal (meaning that the
spread of difference scores between the study conditions is approximately the same). In Figure 12.10,
Mauchly’s test significance level is p “ .720. If Mauchly’s test is non-significant (i.e. p ° .05, as is
the case in this analysis) then it is reasonable to conclude that the variances of the differences are not
significantly different (i.e. they are roughly equal and sphericity can be assumed.).

If, on the other hand, Mauchly’s test had been significant (p † .05) then we would conclude
that there are significant differences between the variance of the differences, and the requirement of
sphericity has not been met. In this case, we should apply a correction to the F -value obtained in the
one-way related ANOVA analysis:
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Figure 12.9: Repeated measures ANOVA in JASP
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 12.10: One-way repeated measures ANOVA output: Mauchly’s Test of Sphericity
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• If the Greenhouse-Geisser value in the “Tests of Sphericity” table is ° .75 then you should use
the Huynh-Feldt correction.
• But if the Greenhouse-Geisser value is † .75, then you should use the Greenhouse-Geisser

correction.

Both these corrected F -values can be specified in the Sphericity Corrections check boxes under
the Assumption Checks options, and the corrected F -values are then shown in the results table, as in
Figure 12.11.

In our analysis, we saw that the p-value for Mauchly’s Test of Sphericity was p “ .720 (i.e.
p ° 0.05). So, this means we can assume that the requirement of sphericity has been met, so no
correction to the F -value is needed. Therefore, we can use the ‘None’ Sphericity Correction output
values for the repeated measure ‘Task’: F “ 6.93, df “ 2, p “ .013, and we can conclude that
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Figure 12.11: One-way repeated measures ANOVA output: Tests of Within-Subjects Effects
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the number of tests successfully completed on each language task did vary significantly depending on
whether the task was speech, comprehension or syntax based (F p2, 10q “ 6.93, p “ .013).

As usual, descriptive statistics should be reviewed to help interpret the results. One particularly
nice way to produce them in the JASP output is to go to the ‘Additional Options’ menu and move
‘Task’ to the action box under ‘Marginal Means’. This will produce the table shown in Figure 12.12,
which includes not only means for each condition, but also 95% CIs for each mean. Comparison of
the mean number of trials successfully completed by participants shows that Broca’s Aphasics perform
reasonably well on speech production (mean “ 7.17) and language comprehension (mean “ 6.17)
tasks. However, their performance was considerably worse on the syntax task (mean “ 4.33), with a
significant difference in post-hoc tests between Speech and Syntax task performance.

Figure 12.12: Repeated measures ANOVA output: Descriptive statistics via the ‘Marginal Means’
dialogue.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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12.9

The Friedman non-parametric repeated measures ANOVA test

The Friedman test is a non-parametric version of a repeated measures ANOVA and can be used
instead of the Kruskall-Wallis test when testing for differences between three or more groups where
the same participants are in each group, or each participant is closely matched with participants in
other conditions. If the dependent variable is ordinal, or if the assumption of normality is not met,
then the Friedman test can be used.

Figure 12.13: The Friedman nonparametric repeated measures ANOVA in JASP
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As with the Kruskall-Wallis test, the underlying mathematics is complicated, and won’t be pre-
sented here. For the purpose of this book, it is sufficient to note that JASP calculates the tie-corrected
version of the Friedman test, and in Figure 12.13 there is an example using the Broca’s Aphasia data
we have already looked at.

It’s pretty straightforward to run a Friedman test in JASP. Just go to the ‘Nonparametrics’ menu
and move ‘Task’ into the ‘RM Factor’ box. You should also click the ‘Conover’s post hoc tests’ option.

The JASP results in Figure 12.13 show a chi-square value, degrees of freedom, the p-value, and a
Kendall’sW value. Since the p-value is less than the level conventionally used to determine significance
(p † .05), we can conclude that there is a difference among the 3 levels of task. Conover’s post
hoc tests indicate that the patients perform reasonably well on speech production (mean “ 7.2) and
language comprehension (mean “ 6.2) tasks. However, their performance was considerably worse on
the syntax task (median “ 4.3), with a significant difference in post-hoc tests between Speech and
Syntax task performance. Do note that this significant difference only appears with the uncorrected
p-value; both the Bonferroni-corrected and Holm-corrected p-values are not significant (p “ 0.081
for both).
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12.10

On the relationship between ANOVA and the Student t-test

There’s one last thing I want to point out before finishing. It’s something that a lot of people find kind
of surprising, but it’s worth knowing about. An ANOVA with two groups is identical to the Student t-
test. No, really. It’s not just that they are similar, but they are actually equivalent in every meaningful
way. I won’t try to prove that this is always true, but I will show you a single concrete demonstration.
Suppose that, instead of running an ANOVA on our mood.gain ~ drug model, let’s instead do it using
therapy as the predictor. If we run this ANOVA we get an F -statistic of F p1, 16q “ 1.71, and a
p-value = 0.21. Since we only have two groups, I didn’t actually need to resort to an ANOVA, I
could have just decided to run a Student t-test. So let’s see what happens when I do that: I get a
t-statistic of tp16q “ ´1.3068 and a p-value = 0.21. Curiously, the p-values are identical. Once again
we obtain a value of p “ .21. But what about the test statistic? Having run a t-test instead of an
ANOVA, we get a somewhat different answer, namely tp16q “ ´1.3068. However, there is a fairly
straightforward relationship here. If we square the t-statistic then we get the F -statistic from before:
´1.30682 “ 1.7077

12.11

Summary

There’s a fair bit covered in this chapter, but there’s still a lot missing. Most obviously, I haven’t
discussed how to run an ANOVA when you are interested in more than one grouping variable, but that
will be discussed in a lot of detail in Chapter 13. In terms of what we have discussed, the key topics
were:

• The basic logic behind how ANOVA works (Section 12.2) and how to run one in JASP (Sec-
tion 12.3).
• How to compute an effect size for an ANOVA (Section 12.4)
• Post-hoc analysis and corrections for multiple testing (Section 12.5).
• The assumptions made by ANOVA (Section 12.6).
• How to check the homogeneity of variance assumption (Section 12.6.1) and what to do if it is

violated (Section 12.6.3).
• How to check the normality assumption (Section 12.6.4) and what to do if it is violated (Sec-

tion 12.7).
• Repeated measures ANOVA (Section 12.8) and the non-parametric equivalent, the Friedman

test (Section 12.9).
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As with all of the chapters in this book, there are quite a few different sources that I’ve relied
upon, but the one stand-out text that I’ve been most heavily influenced by is Sahai and Ageel (2000).
It’s not a good book for beginners, but it’s an excellent book for more advanced readers who are
interested in understanding the mathematics behind ANOVA.
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